Package: APtools 6.8.8

APtools: Average Positive Predictive Values (AP) for Binary Outcomes and Censored Event Times

We provide tools to estimate two prediction accuracy metrics, the average positive predictive values (AP) as well as the well-known AUC (the area under the receiver operator characteristic curve) for risk scores. The outcome of interest is either binary or censored event time. Note that for censored event time, our functions' estimates, the AP and the AUC, are time-dependent for pre-specified time interval(s). A function that compares the APs of two risk scores/markers is also included. Optional outputs include positive predictive values and true positive fractions at the specified marker cut-off values, and a plot of the time-dependent AP versus time (available for event time data).

Authors:Hengrui Cai <[email protected]>, Yan Yuan <[email protected]>, Qian Michelle Zhou <[email protected]>, Bingying Li<[email protected]>

APtools_6.8.8.tar.gz
APtools_6.8.8.zip(r-4.5)APtools_6.8.8.zip(r-4.4)APtools_6.8.8.zip(r-4.3)
APtools_6.8.8.tgz(r-4.4-any)APtools_6.8.8.tgz(r-4.3-any)
APtools_6.8.8.tar.gz(r-4.5-noble)APtools_6.8.8.tar.gz(r-4.4-noble)
APtools_6.8.8.tgz(r-4.4-emscripten)APtools_6.8.8.tgz(r-4.3-emscripten)
APtools.pdf |APtools.html
APtools/json (API)

# Install 'APtools' in R:
install.packages('APtools', repos = c('https://hengruicai.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • mayo - Mayo Marker data

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 7 scripts 275 downloads 3 exports 4 dependencies

Last updated 6 years agofrom:9fad78ea7c. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 13 2024
R-4.5-winOKNov 13 2024
R-4.5-linuxOKNov 13 2024
R-4.4-winOKNov 13 2024
R-4.4-macOKNov 13 2024
R-4.3-winOKNov 13 2024
R-4.3-macOKNov 13 2024

Exports:APBinaryAPSurvCompareAP

Dependencies:cmprsklatticeMatrixsurvival